

Mikhail Stolbov<sup>1</sup>

ГОДИНА XXIII, 2014, 1

# INTERNATIONAL CREDIT CYCLES: A REGIONAL PERSPECTIVE

Credit/GDP ratio is used to construct stylized credit cycles at global and regional levels over 1980–2010. The analysis encompasses 94 countries in 7 regions and is based on vector auto-regression (VAR) methodology. It is found that the average duration of the regional credit cycles is between 12 and 15 years and there is "a ceiling" and "a floor" curbing the amplitude of these cycles. They are also largely interconnected, with the US credit cycle playing a pivotal role for the rest of the regions and being insulated from any external influence meanwhile. The relationship between credit cycles and the intensity of banking crises is also discussed. It appears that fewer banking crises occur in the regions exerting predominant influence over their counterparts and having a higher number of total connections. JEL: E50; F37; G15; G17

#### 1. Introduction

The 2008-2009 global economic turmoil has translated into a growing number of research papers on the finance–business cycles nexus. Some authors argue that finance remains only a transmission mechanism of economic instability, triggered by real causes. The financial accelerator models illustrate this approach best: borrower balance sheets deteriorate, thus influencing delinquency and default rates, which in turn undermines the strength of bank balance sheets (Jurgen, Broer 2010; Coric 2011; *Basel Committee on Banking Supervision* 2011). By now, the real to financial sector transmission channels have been studied thoroughly and incorporated into DSGE models. However, the DSGE models with embedded financial frictions still remain an imperfect tool for macroeconomic policy analysis and should be complemented by alternative approaches (Brazdik et al. 2012). It provides rationale for a more comprehensive role of finance in the macroeconomic volatility, not confined to a mere amplification of real shocks.

In this regard it is natural to assume that finance has evolved into a self-sufficient determinant of business cycles. Ueda (2012) presents a theoretical model explaining how financial intermediaries involved into chained credit contracts at home and abroad

<sup>&</sup>lt;sup>1</sup>Mikhail Stolbov is Associate Professor, PhD. in Economics, Department of Applied Economics, Moscow State Institute of International Relations (University), 76, Prospekt Vernadskogo, 119454 Moscow, Russia, tel. +7-499-433-15-48, e-mail: stolbov\_mi@mail.ru.

contribute to business cycle synchronization. Therefore, the tightening of financing conditions by itself may significantly exacerbate business cycle dynamics, as was the case with the 1990–91, 2001 and the past recessions in the USA (Jermann, Quadrini 2012). In a recent study, Jorda, Schularick and Taylor (2013) find that the recessions preceded by financial crises are more costly than "normal" recessions in terms of lost output.

Although financial situation is not the unique determinant of business cycles and the linkage between them is not unidirectional, cyclical patterns of financial variables have begun exerting overwhelming influence on overall economic performance. Thus, the notion "financial cycles" has come to the fore. They encompass credit, housing and equity cycles.

Certain work has been done to figure out stylized facts about them. First, all the three cycles are pretty well synchronized across developed countries. Second, there are feedback effects between them – between housing and credit cycles, in particular. Third, financial cycles are characterized by significant, though not complete, concordance with business cycles (Claessens, Kose, Terrones 2011a). Credit cycles demonstrate the most pronounced co-movement with business cycles, with Harding-Pagan concordance index equal to 0,81 (Claessens, Kose, Terrones 2011b). Egert and Sutherland (2012) also report that real and financial cycles are significantly synchronized in developed economies, with the degree of concordance having peaked over the Great Moderation period. The similar evidence is presented in Martin (2011) who also identifies three phases of credit cycles – credit expansion, intermediate credit growth and credit crisis – as well as their duration. Fourth, peaks in financial cycles are closely associated with systemic banking crises (Borio 2012).

These stylized facts are subject to criticism as they refer to financial cycles in advanced economies and embrace the period 1960:1-2007:4, leaving out the Great Recession impact. Some empirical studies also question high concordance between credit and business cycles, stating that both have a life of their own (Credit Cycles and their Role for Macro-prudential Policy 2011). In another contribution, Haavio (2012) asserts that the synchronization between credit and business cycles is virtually absent in case of 17 OECD economies, as loan market developments tend to lag developments in real activity. Aikman et al. (2011) conclude that the length and amplitude of the credit cycle exceed those of the business cycle.

In order to come to more robust conclusions, it is necessary to increase the number of countries in the sample. Selection of cycle indicators also matters. In the papers cited aggregate claims on the private sector by deposit banks were used as a measure of credit cycles.

In this paper I resort to the so-called financial depth measures of financial cycles. Speaking about credit cycles, I mean the share of domestic credit to private sector (as % of GDP) (credit/GDP ratio). This ratio synthesizes cyclical properties of credit and GDP and is helpful in detecting excessive credit indebtedness, which is important from the macro-prudential regulation perspective. Recent papers on new approaches to macro-prudential regulation emphasize the feasibility of credit/GDP ratio as a potential anchor for the implementation of countercyclical capital buffers under Basle III. It outperforms such measures as real credit or money aggregates (Drehmann, Borio, Tsatsaronis 2011) as a warning indicator of credit "overheating". Moritz Schularick and Alan M. Taylor (2012)

also find that credit/GDP is a good predictor of financial crises in the long-run, as they rely on a dataset for 14 countries over the years 1870-2008. Moreover, they show that countries with high credit/GDP ratios are not only more prone to banking crises, but are also more likely to face other types of financial turmoil, namely, more dangerous stock market busts.

The starting point of the time span I focus on in the research is associated with the beginning of a mighty wave of financial globalization, according to Rajan and Zingales (2004). It turns out that there has actually been a single credit cycle over this period at global level (measured "from peak to peak"). It covered 1990-2005, with the downturn phase lasting from 1990 to 1997. The dating of regional credit cycles is not uniform, and I generalize the findings in Section 2 of the paper.

In addition to describing cyclical patterns of credit along global and regional dimensions, in Section 3 an attempt is made to evaluate the role of a given region and country in the transmission of credit cycles at cross- and intra-regional levels. To this end, I resort to computing the so-called *net spillover index* (NSI), introduced in *Credit Cycles and their Role for Macro-prudential Policy* (2011). It measures a degree to what a region or a country is subject to credit cycle spillover from others or exerts predominant influence itself. I also focus on the components of this metric – the total number of counterparts to which a region or a country is connected, the number of incoming (subject to influence from other countries' credit cycles) and outgoing (impact on other countries' credit cycles) linkages. To calculate NSI the methodology of vector auto-regressions (VAR) is applied. It ties the paper with a burgeoning literature on financial spillovers and contagion where such econometric techniques are used (Helbling et al. 2010; Xu 2011). The paper has also much in common with a strand of literature seeking to construct tractable measures of systemic risk at the macroeconomic level (Diebold, Yilmaz 2009; Allen et al. 2010; Billio et al. 2012).

At regional level the main finding is related to the US credit cycle, which proves to be the most influential in the world. It has directly led 3 other regional credit cycles in 1980–2010, experiencing exogenous influence of none itself. It again justifies the statement that when the USA sneezes, the world catches cold! In Section 4 I examine how NSIs at regional and country levels and their components are related to the number of banking crises episodes in 1980–2010. A special dataset is created to reach the purpose, combining Reinhart–Rogoff (2011) and Laeven databases (2010). I find that countries that pertain to the regions exerting predominant influence over their counterparts and having a higher number of total connections at the same time experience fewer banking crises.

The remainder of the paper is organized as follows: Section 2 describes the data, methodology and cyclical patterns of regional credit cycles; Section 3 introduces net-spillover indices at regional and country levels; Section 4 studies the relationship between net-spillover indices and banking crises episodes; Section 5 concludes, indicating avenues for future research.

#### 2. Global and regional credit cycles: methodology and properties

To extract global and regional credit cycles, annual domestic credit to private sector/GDP ratios for 94 countries are used. The data source is the World Development Indicators (WDI). The countries with missing values of this indicator for at least a single year in 1980-2010 have been eliminated from the initial sample and no interpolation has been carried out.

There are two approaches to characterize empirically any cyclicality of an economic or financial variable: turning points and frequency-based filters. The latter is used in this paper. The global credit cycle is derived as follows. First, the credit/GDP series for all the countries are detrended. To this end, I employ Hodrick-Prescott (1997) filter. I consider a credit cycle as a deviation from the trend in a country's credit/GDP series. It is necessary to specify that relative deviation from trend is computed ( $\frac{credit/GDP_i - credit/GDP_i_trend}{credit/GDP_i_trend}$ ).

Second, the constructed series are normalized to obtain an individual country's stylized credit cycle: relative deviations from trend for each year less mean for 1980-2010 divided by standard deviation for 1980-2010. Finally, the first principal component for the series is extracted and normalized according to the described procedure.<sup>2</sup> The result is a standardized global cycle presented below (fig. 1).



 $<sup>^{2}</sup>$  I yield very similar results of the credit cycle extraction on the basis of another technique – Baxter-King (1999) band pass filter. They are available from the author upon request.

It turns out that there has actually been a single credit cycle over this period at global level (measured "from peak to peak"). It covered 1990-2005, with the downturn phase lasting from 1990 to 1997. The beginning of the downturn meshes well with a burst of systemic financial crises in Latin America (Mexico, Brazil, etc.) and banking crises in Scandinavian countries. The trough of the cycle is associated with a number of serious financial crises in NICs. The upturn of the global credit cycle was resilient and almost unaffected by the 2001 dotcom crisis and US recession.

It is also noteworthy that both upper turning points of the cycle are reached at comparable level. It indicates that the 2008-2009 crisis was not preceded by any supernatural credit overhang, the global credit indebtedness in 2005 was 13% higher than in 1990. The upper turning point registered in 2005 and, say, not in 2006 or 2007, as one may intuitively have expected, seems an important empirical finding as well.

Now I turn to regional credit cycles. The names and county composition of regions are from WDI (Appendix 1). The methodology of cycle extraction is in line with the one used for the global credit cycle. Standardized regional credit cycles are displayed below (Figure 2a, b, c, d, e, f, g). In case of North America regional credit cycle is equivalent to the US, as Canada and Bermuda contain missing values in their series.





25



Regional credit cycles are far from being uniform in shape. In case of the US one may decipher at least 2 cycles: from 1986 to 1999 and from 1999 to 2007 (measured "from peak to peak"). The upturns and downturns of the cycles adequately correspond to overall US macroeconomic performance, reflecting such episodes as the New Economy boom in 1996-2000, sub-prime mortgage expansion in 2003–2007 as well as busts of respective bubbles in 2001 and 2008-2009 with significant credit depth deterioration.

The European credit cycle lasted from 1991 to 2004, with 1997 being the trough. In 2004-2009 there was a clear downward trend with a local trough in 2009. The downturn in 2005-2009 in the European credit cycle was moderate. Two reasons may account for it. First, active bail-outs carried out by monetary authorities helped avoid massive write-offs in traditional loan portfolios. Second, the reduction in GDP partly ameliorated the shrinkage in credit volumes, as business and financial cycles in advanced economies are well synchronized.

As for East Asia, its credit cycle covered the span between 1994 and 2005, with 2001 being the trough. The downturn is completely associated with the crisis in the NICs. Again, the downturn in 2006-2009 was relatively mild.

In Latin America the credit cycle embraced 1993-2009. There was a steady and long downturn between 1993 and 2003. So, the 1990s could also be treated as a lost decade for Latin America from the financial development perspective, just like "flat" credit/GDP levels observed in the 1980s. But the 2008–2009 global recession passed unnoticed for Latin America with a pronounced upward trend in credit/GDP ratio. Almost identical cyclical pattern is found in case of Middle East and North Africa.

In South Asia the credit cycle lasted from 1992 to 2006. There was a protracted period of low credit/GDP levels between 1995 and 2001 which coincided with the financial disruption in the NICs.

Sub-Saharan Africa experienced a substantial upturn between 1999 and 2005 after mixed dynamics in the preceding years. Yet, it was reversed in 2006-2009.

To summarize the stylized facts about global and regional credit cycles, one may state that their average duration is 12-15 years, almost equally divided between upturns and downturns. This finding is in line with Drehmann, Borio, Tsatsaronis (2012) who accentuate that financial cycles can successfully be captured in the middle term, with their average length equal to 16 years. Despite the initial expectations that the downturn of the last credit cycle was extremely deep, the empirics don't lend much support to them. For all the regions there is "a ceiling" and "a floor" curbing the amplitude of credit cycles. The first is a 1.5 standard deviation above the mean for 1980-2010, the second is the same value below the mean.

### 3. Cross- and intra-regional credit cycles' spillovers

Credit cycles in different regions and countries don't occur in vacuum. Modern banking systems are deeply interconnected, so credit cycles are sure to spill over both at cross- and intra-regional levels. My purpose in this section is to establish links between regional cycles, thus, finding out which of them strongly affect other regions' cycles and which are subject to external influence.

This analysis is helpful to evaluate risks of the banking cycle contagion. Its methodology rests on the use of vector auto-regressions (VARs). I use an unrestricted VAR model and treat all the standardized regional credit cycle time series as endogenous variables. I experiment with different number of lags, testing for optimal lag length and overall model stability. According to LR-statistic, the model with a 2-period lag should be selected. It proves to be stable, as inverse roots of AR characteristic polynomial lie inside the unit circle. The standard output of impulse-response analysis and variance decompositions are also reported (Appendix 2).

Then I fill in a table displaying connections between the variables. The criterion is a tstatistic that is equal or exceeds 2 in respective regressions.<sup>3</sup> The result is the following table.

#### Table 1

| t=2             | US_STD_CYCLE | EURO_STD_CYCLE | EASIA_STD_CYCLE | LATAM_STD_CYCLE | SASIA_STD_CYCLE | MENA_STD_CYCLE | SSAFR_STD_CYCLE | sub_to_infl |
|-----------------|--------------|----------------|-----------------|-----------------|-----------------|----------------|-----------------|-------------|
| US_STD_CYCLE    |              |                |                 |                 |                 |                |                 | 0           |
| EURO_STD_CYCLE  |              | +              | +               | +               |                 |                |                 | 3           |
| EASIA_STD_CYCLE | +            | +              | +               |                 |                 |                |                 | 3           |
| LATAM_STD_CYCLE |              | +              | +               |                 | +               | +              |                 | 4           |
| SASIA_STD_CYCLE | 2+           |                |                 |                 | +               |                |                 | 3           |
| MENA_STD_CYCLE  |              |                |                 |                 |                 | 2+             |                 | 2           |
| SSAFR_STD_CYCLE | 2+           | 2+             | 2+              |                 | +               |                |                 | 7           |
| exert_infl      | 5            | 5              | 5               | 1               | 3               | 3              | 0               | 0           |

Connectedness of regional credit cycles

Independent variables generating outgoing impulses are in columns. '+' denotes the presence of a linkage, '2+' means that both lags of the respective independent variable affect this or that dependent one. For example, in column 1 it is seen that the standardized US credit cycle takes a 1- and 2-year lead of the South Asian one and that of Sub-Saharan Africa and a one-year lead of the Eastern Asian credit cycle. The last right-hand column contains information on the number of linkages the region is subject to, whereas the bottom line summarizes data on the number of linkages this region generates itself.

Consequently, one can conclude that the US credit cycle is the most influential, as it produces 5 linkages with 3 regions and remains totally unaffected itself. Then come Europe and East Asia. Europe receives feedback from itself, East Asia and Latin America. East Asia is affected by the USA, European and its own credit cycles. Surprisingly, it seems that the US credit cycle affects Europe in a "roundabout" way – via East Asia. Thus, one may conjecture that a banking crisis (or any other financial turmoil) originated in the USA will be particularly contagious for Europe if previously amplified in Japan and/or China that shape the credit cycle in East Asia. The conclusion that the US credit cycle plays a pivotal role for the rest of the world is consonant with the results obtained by Rey (2013) who argues that the global financial cycle is largely determined by the monetary policy of the so–called centre country, which affects global bank leverage, capital flows and credit creation across the rest of the countries. Moreover, the famous trilemma under such

<sup>&</sup>lt;sup>3</sup> Alternative approaches include revealing links on the basis of Granger-causality tests as Billio et al. (2012) suggest or by constructing spillover indices built from variance decompositions (Diebold, Yilmaz 2009). Yet, I prefer dealing with robust coefficients directly from the VAR model. It is known that links extracted from Granger-causality tests may be different along with the number of lags taken and variance decompositions are sensitive to changes in variable ordering. Nevertheless, I checked how consonant all the three metrics. The approaches alternative to the baseline one used in this paper sharply contradict each other, exhibiting correlation of -0.36. Meanwhile, they are positively correlated with the NSI calculated in this paper, with the correlation ratio being in the vicinity of 0.4. The corresponding computations of Granger-causality tests and spillover indices built from variance decompositions can be obtained from the author upon request.

conditions boils down to the dilemma: if capital flows are mobile, the global financial cycle constrains the national monetary policy irrespective of exchange rate regime.

Middle East and North Africa as well as South Asia are in a neutral position in the sense that that the first exercises quite a limited influence and the second has a zero balance of linkages. Latin America and Sub-Saharan Africa are significantly influenced by the credit cycles of the other regions.

It is also interesting to evaluate the net influence effect for each region. To this end, I resort to the net spillover index (NSI). It is calculated as the number of outgoing linkages less the number of incoming ones divided by the total sum of linkages attributed to the region. By definition it ranges from -1 to 1. The value of -1 indicates that the region only receives external impulses, i.e. its credit cycle is determined by developments in other regions. On the contrary, NSI equal to 1 means the region is independent of any external influence and shapes credit cycles of its counterparts. Below I compute and visualize NSI values (fig. 3).



Having NSI value significantly positive or close to1 makes the region almost immune to any banking shocks originated in other places. However, this position also transforms this region into a systemically important one. It means that any significant shock generated within the region may be quickly propagated and amplified undermining global financial stability. This fact imposes great responsibility over monetary authorities and banking regulators in the US, Europe and East Asia. It additionally points to the necessity of cooperation of these key regions in macro-prudential regulation of banking. The same is true for Middle East and North Africa, though this region has a much more "isolated" credit cycle.

Figure 3

The same approach to assessing credit cycle links could be applied at intra-regional level, as it helps identify countries disseminating their financial influence and those that only passively adjust to external impact. Again I report figures of NSIs values<sup>4</sup> (fig. 4a, b, c, d, e, f).



<sup>&</sup>lt;sup>4</sup> The output of respective VAR models and proofs of their stability are available from the author upon request.



One should pay particular attention to country–level NSIs in Europe and East Asia because they have been found crucial in terms of influence on other regions' credit cycles. The countries characterized by positive NSI values in Europe and East Asia are not only resistant to financial shocks that may occur within the two regions, but also have significant potential to exert negative impact on other regions if a shock arises precisely in the given countries. So, the analysis provides preliminary guidelines for revealing countries with systemically important credit cycles.<sup>5</sup>

In Europe and Central Asia the UK, Germany and Turkey are on the top-list with NSI value equal to 1. They are followed by Switzerland, Finland, Greece and Spain. The fact that Greece and Spain have positive NSI values means that financial conditions in the countries affect the performance of their counterparts, both in Europe and beyond. This finding additionally explains why the 2010-2012 Greek crisis turned out to be so difficult to resolve. It is also worth mentioning that the Greek credit cycle leads the Spanish one, whereas the financial conditions in Spain directly affect Portugal, Ireland and Switzerland.

In East Asia the most striking thing is that China has an NSI equal to -1. This fact, however, doesn't necessarily imply that this country is easily affected by its regional counterparts' credit cycles. It is a significant financial power and linkages with other regions may be much more important for China. If extra-regional linkages are taken into

<sup>&</sup>lt;sup>5</sup> As the time-series in the analysis include only 31 observations, it is impossible to construct a genuinely global VAR model that would evaluate dependence of a given country on all other countries' or regions' credit cycles. So, the conclusions made may be subject to certain extensions given the suggested comprehensive analysis is conducted.

consideration, NSI value may be quite different. A plausible explanation for the result obtained is that China experiences influence by the countries whose credit cycles may be particularly tied to the US and Europe (Korea, Rep., New Zealand, Malaysia). So, this could be an indirect impact of other regions' credit cycles. In other regions there are also some unexpected results of NSI computation, like Saudi Arabia in MENA or Chile in Latin America which have received negative scores. Nevertheless, the regions these countries belong to are not of systemic importance and the result changes little in the global transmission of credit cycles.

#### 4. Credit cycle spillovers and banking crises

Now I turn to examining a possible relationship between the computed NSIs at country level and the intensity of banking crises. I combine two special datasets on the incidence of banking crises that cover the period of 1980-2010 – Reinhart-Rogoff (2011) and Laeven (2010). They overlap to a great extent. In the cases they contradict, I rely on Reinhart-Rogoff database (2011) as a more recently updated data source. Thus, I assemble a sample of 65 countries in which at least one episode of banking crisis took place in 1980-2010. Figure 5 visualizes the data.

Then I make a regression of the number of banking crises (BANKCR) per country on a constant, respective NSI of the country (NSI\_c), that of the region it belongs to (NSI\_reg) and three control variables. The set of control variables includes GDP growth rate (GDP\_GROWTH), inflation rate (GDP deflator, INF\_DEFL) and merchandise trade as a share of GDP (MERTRADE\_GDP), all average across 1980–2010. The data come from the WDI.

The choice of control variables is mainly motivated by Demirguc–Kunt and Detragiache (1997). They find that slow GDP growth and high inflation constitute the macroeconomic environment prone to banking crises. Merchandise trade as a share of GDP has been added to the list of control variables as many developing countries in the sample exploited an export-led growth model over 1980–2010. Thus, it would be additionally interesting to establish if active foreign trade deters or spurs banking crises. As the dependent variable may take on only integer values, I use the so-called Poisson regression (Appendix 3a).

At first glance the formal result is that the regression is of acceptable quality. The predictors of major interest (NSI\_c, NSI\_reg) are significant. The main finding is that the greater NSI a country has, the more vulnerable to banking crises it is. Also, the number of banking crises seems inversely connected with a regional NSI. So, having a high country-level NSI may be a pro–crisis factor, whereas a high NSI value at regional level may be a buffer to financial turmoils.

Among control variables INF\_DEFL and MERTRADE\_GDP are significant at 5% level, GDP\_GROWTH – at 10%. Higher inflation as a proxy of uncertain macroeconomic situation is positively correlated with the number of banking crises, while active foreign trade seems to ameliorate this risk. The positive sign at GDP\_GROWTH provides some evidence (though, not quite strong) that countries developing more rapidly are also more

prone to instability in the banking system. This finding contrasts sharply with the conclusion by Demirguc–Kunt, Detragiache (1997).<sup>6</sup>





Figure 5

<sup>&</sup>lt;sup>6</sup>A recent paper by Klomp (2010) also states that slow economic growth or downturn is a determinant of banking crises. Yet, it underlines that causes of banking crises are diverse; none of the most influential determinants account for more than 60% of the crises between 1970-2007 and their impact differs in terms of systemic and non-systemic crises and across stages of economic development.

However, the robustness of the overall results is to be checked as they may be biased due to the overdispersion in the dependent variable, which means that the equality of the conditional mean and variance is broken. This is a typical problem with Poisson regressions. To establish if one can rely on the results, a goodness-of-fit test (Wooldridge 1990) is carried out. Its idea is to regress residuals (SRESID) of the estimated regression on fitted values of the dependent variable (BANKCR\_F). If this predictor is significant (a constant is suppressed), it means that the basic premise of Poisson regression is violated and its results are unreliable. The output of this auxilliary regression is presented in Appendix 3b. As t-statistic is not significant even at 10%-level, conditional mean and variance of the dependent variable can be considered equal and the obtained Poisson regression appropriate.

However, I treat the qualitative conclusions with certain caution: the positive association between high NSI values within a region and the number of banking crises per country may be a mere reflection of the fact that such regions as Sub-Saharan Africa and Latin America have much higher average NSIs at country levels in comparison with Europe and East Asia (0.19 and 0.43 vs. 0.06 and 0.13). Further research is needed in this area.

As a starting point of it, I disaggregate the NSIs and use four predictors for banking crises – the difference between endogenous and exogenous links of a country's credit cycle at regional and country levels (i.e. the numerators of the respective NSIs – DIF\_C, DIF\_REG) and total sums of a country's credit cycles (i.e. the denominators of the respective NSIs – TOTINFL\_C, TOTINFL\_REG). The rest of the estimation is as described above. The result is presented in Appendices 3c, d. It sheds additional light on the connection between credit cycle links and banking crises. It is the cross–regional dimension that matters more than intra-regional interactions: the regions that exert predominant influence over their counterparts and have a higher number of total connections at the same time experience fewer banking crises. In other words, to give is better than to receive (impulses), rephrasing the title of a paper by Diebold and Yilmaz (2010).

### 5. Conclusions

In the paper standardized credit cycles were constructed for 7 regions and 94 countries. The cyclical patterns of the regional cycles have been studied and discussed and the notion of a global credit cycle has been introduced. Some regularities in their structure and duration have been discovered.

Regional cycles prove to be largely interdependent. The US credit cycle is the most influential and autonomous among them. Europe and East Asia come next. Other regions passively adjust to credit cyclicality of the mentioned regions. It has a direct implication for the conduct of economic policy. Macro-prudential measures should be coordinated and credit cycles should be carefully monitored precisely with respect to these three regions.

I have also studied the interdependence of country-level credit cycles and the impact of regional and country-level credit cycles on the intensity of banking crises. The regions that

exert predominant influence over their counterparts and have a higher number of total connections at the same time experience fewer banking crises.

Further study of this interdependence could also be based on a different methodology. Using tools of network analysis looks quite promising in this respect. This approach may create additional value added as it is aimed at visualizing links between credit cycles. A pathbreaking paper that builds a bridge between VAR tecniques and network analysis in assessing financial connectedness is Diebold and Yilmaz (2011) which proposes a set of new measures of interdependence built from pieces of variance decompositions.

#### References

- Aikman, D, Haldane, A. and Nelson, B. (2011). Curbing the credit cycle. Paper presented at the Columbia University Center on Capitalism and Society Annual Conference, New York, November.
- Allen, F., Babus, A., Carletti, E. (2010). Financial Connections and Systemic Risk. NBER Working Paper 16177.
- Basel Committee on Banking Supervision. (2011). The Transmission Channels between the Financial and Real Sector: a Critical Survey of Literature. Working Paper N 18.
- Baxter, M., King, R. (1999). Measuring Business Cycles: Approximate Band-Pass Filters for Economic Time Series. – Review of Economics and Statistics, Vol. 81(4), p. 575-593.
- Billio, M., Getmansky, M., Lo, A. W., Pelizzon, L. (2012). Econometric Measures of Connectedness and Systemic Risk in the Finance and Insurance Sectors. – Journal of Financial Economics, Vol. 104 (3), p. 535-539.
- Borio, C. (2012). The Financial Cycle and Macroeconomics: What Have We Learnt?. BIS Working Paper 395.
- Brazdik, F., Hlavacek, M., Marsal, A. (2012). Survey of Research on Financial Sector Modeling within DSGE models: What Central Banks Can Learn from it?. – Czech Journal of Economics and Finance, Vol. 62 (3), p. 252-277.
- Coric, B. (2011). The Financial Accelerator Effect: a Survey. Financial Theory and Practice, Vol. 35 (2), p. 171-196.
- Claessens, S., Kose, M.A., Terrones, M.E. (2011a). Financial Cycles: What? How? When?. IMF Working Paper 11/76.
- Claessens, S., Kose, M. A., Terrones, M. E. (2011b). How Do Business and Financial Cycles Interact?. – IMF Working Paper 11/88.
- European Banking Federation. (2011). Credit Cycles and their Role for Macro-prudential Policy. Mimeo.
- Demirguc-Kunt, A., Detragiache, E. (1997). The Determinants of Banking Crises: Evidence from Industrial and Developing Countries. World Bank Policy Research Paper 1997.
- Diebold, F. X., Yilmaz, K. (2009). Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets. Economic Journal, Vol. 119 (534), p. 158-171.
- Diebold, F. X., Yilmaz, K. (2010). Better to Give than to Receive: Predictive Directional Measurement of Volatility Spillovers. – KOK University-TUSIAD Economic Forum Working Paper N 1001.
- Diebold, F. X., Yilmaz, K. (2011). On the Network Topology of Variance Decompositions: Measuring the Connectedness of Financial Firms. – NBER Working Paper 17490.
- Drehmann, M., Borio, C., Tsatsaronis, K. (2011). Anchoring Countercyclical Capital Buffers: the Role of Credit Aggregates. – International Journal of Central Banking, Vol. 7(4), p. 190-240.

- Drehmann, M., Borio, C., Tsatsaronis, K. (2012). Characterizing the Financial Cycle: don't lose sight of the medium term!. BIS Working Paper 380.
- Égert, B., Sutherland, D. (2012). The Nature of Financial and Real Business Cycles: The Great Moderation and Banking Sector Pro-Cyclicality. – OECD Economics Department Working Papers 938, OECD Publishing.
- Haavio, M. (2012). Financial Cycles and Business Cycles: Some Stylized Facts. BOFIT Monetary and Policy Research Online.
- Helbling, T., Huidrom, R., Kose, M. A., Otrok, C. (2010). Do Credit Shocks Matter? A Global Perspective. Mimeo.
- Hodrick, R., Prescott, E. (1997). Postwar U.S. Business Cycles: An Empirical Investigation. Journal of Money, Credit, and Banking, Vol. 29 (1), p. 1-16.
- Jermann, U., Quadrini, V. (2012). Macroeconomic Effects of Financial Shocks. The American Economic Review, Vol. 102 (1), p. 238-271.
- Jorda, O., Schularick, M., Taylor, A. M. (2013). When Credit Bites Back. Journal of Money, Credit and Banking, Vol. 45 (s2), p. 3-28.
- Jurgen, A., Broer, P. (2010). Linkages between the Financial and the Real Sector of the Economy. A Literature Survey. CPB Netherlands Bureau for Economic Policy Research Document 216.
- Klomp, J. (2010). Causes of Banking crises Revisited. The North American Journal of Economics and Finance, Vol. 21(1), p. 72-87.
- Laeven, L., Valencia, F. (2010). Resolution of Banking Crises: the Good, the Bad, and the Ugly. IMF Working Paper 11/88.
- Martin, R. (2011). Credit Cycles: Evidence Based on a Non Linear Model for Developed Economies. – Bank of Spain Working Paper 1136.
- Rajan, R., Zingales, L. (2004). Saving Capitalism from the Capitalists: Unleashing the Power of Financial Markets to Create Wealth and Spread Opportunity. Princeton University Press.
- Reinhart, C. M., Rogoff, K. S. (2011). From Financial Crash to Debt Crisis. The American Economic Review, 101(5), p. 1676-1706. Dataset.
- Rey, H. (2013). Dilemma not Trilemma: the Global Financial Cycle and Monetary Policy Independence. Paper presented at the 25th Jackson Hole symposium, Wyoming, August 2013.
- Schularick, M., Taylor, A. M. (2012). Credit Booms Gone Bust: Monetary Policy, Leverage Cycles, and Financial Crises, 1870-2008. – The American Economic Review, Vol. 102(2), p. 1029-1061.
- Teng Teng Xu. (2012). The Role of Credit in International Credit Cycles. Bank of Canada Working Paper 2012-36.
- Ueda, K. (2012). Banking Globalization and International Business Cycles: Cross-border Chained Credit Contracts and Financial Accelerators. – Journal of International Economics, Vol. 86(1), p. 1-16.
- Wooldridge, J. M. (1990). Quasi-Likelihood Methods for Count Data. Chapter 8 in M. Hashem Pesaran and P. Schmidt (eds.) Handbook of Applied Econometrics, Vol. 2, Malden, MA: Blackwell, p. 352-406.

#### Appendix 1 REGIONAL DISTRIBUTION OF COUNTRIES

#### North America The US

### Europe & Central Asia

Cyprus Denmark Finland Germany Greece Iceland Ireland Italy Portugal Spain Sweden Switzerland United Kingdom Turkey

#### East Asia & Pacific

Japan Korea, Rep. New Zealand Singapore China Fiji Indonesia Malaysia Myanmar Papua New Guinea Philippines Solomon Islands Thailand Tonga Vanuatu

#### Middle East & North Africa Israel Malta Saudi Arabia United Arab Emirates Algeria Egypt, Arab Rep. Jordan Syrian Arab Republic

#### Latin America & Caribbean

Bahamas, The Antigua and Barbuda Argentina Belize Bolivia Chile Costa Rica Dominica Dominican Republic Ecuador El Salvador Grenada Guatemala Guyana Honduras Jamaica Mexico Nicaragua Panama Paraguay Peru St. Kitts and Nevis St. Lucia St. Vincent and the Grenadines Uruguay

South Asia Bangladesh India Maldives Nepal Pakistan Sri Lanka

Sub–Saharan Africa Benin Botswana Burkina Faso Burundi Cameroon Central African Republic Chad Congo, Rep. Cote d'Ivoire Gabon Gambia, The Ghana Kenya Lesotho Madagascar Mali Mauritius Niger Nigeria Senegal Seychelles Sierra Leone Sudan Swaziland Togo Benin Botswana Burkina Faso Burundi Cameroon Central African Republic Chad Congo, Rep. Cote d'Ivoire Gabon Gambia, The Ghana Kenya Lesotho Madagascar Mali Mauritius Niger Nigeria Senegal Seychelles Sierra Leone Sudan Swaziland Togo

# Appendix 2

# Table 2a

|                              | US STD       | SSAFR STD  | SASIA STD  | MENA STD   | LATAM STD  | EURO STD   | EASIA STD  |
|------------------------------|--------------|------------|------------|------------|------------|------------|------------|
|                              | CYCLE        | CYCLE      | CYCLE      | CYCLE      | CYCLE      | CYCLE      | CYCLE      |
| US STD CYCLE(-1)             | -0.019537    | 0.236139   | 0.339765   | -0.141972  | -0.121501  | 0.116950   | 0.144551   |
|                              | (0.25902)    | (0.11609)  | (0.16489)  | (0.13114)  | (0.12201)  | (0.11418)  | (0.08908)  |
|                              | [-0.07543]   | [2.03407]  | [2.06057]  | [-1.08263] | [-0.99586] | [1.02430]  | [1.62265]  |
| US STD CYCLE(-2)             | 0.035311     | -0.256298  | -0.386742  | -0.075254  | 0.232524   | -0.019942  | -0.286125  |
|                              | (0.26024)    | (0.11664)  | (0.16566)  | (0.13175)  | (0.12258)  | (0.11471)  | (0.08950)  |
|                              | [ 0.13569]   | [-2.19740] | [-2.33451] | [-0.57118] | [ 1.89693] | [-0.17384] | [-3.19688] |
| SSAFR STD CYCLE(-1)          | -0.111058    | 0.308055   | 0.181239   | -0.068390  | -0.049393  | 0.349148   | 0.278597   |
|                              | (0.40911)    | (0.18336)  | (0.26043)  | (0.20712)  | (0.19270)  | (0.18033)  | (0.14070)  |
|                              | [-0.27147]   | [ 1.68006] | [ 0.69592] | [-0.33019] | [-0.25632] | [ 1.93613] | [ 1.98006] |
| SSAFR STD CYCLE(-2)          | -0.181994    | -0.099975  | 0.255133   | -0.238816  | 0.016698   | -0.048884  | -0.180746  |
|                              | (0.39740)    | (0.17811)  | (0.25298)  | (0.20119)  | (0.18719)  | (0.17517)  | (0.13667)  |
|                              | [-0.45797]   | [-0.56131] | [1.00852]  | [-1.18700] | [ 0.08921] | [-0.27906] | [-1.32246] |
| SASIA_STD_CYCLE(-1)          | 0.064015     | 0.070400   | 0.573272   | 0.091523   | -0.397663  | 0.026503   | 0.036083   |
|                              | (0.39079)    | (0.17515)  | (0.24877)  | (0.19785)  | (0.18407)  | (0.17226)  | (0.13440)  |
|                              | [ 0.16381]   | [ 0.40194] | [ 2.30441] | [ 0.46259] | [-2.16033] | [ 0.15386] | [ 0.26847] |
| SASIA_STD_CYCLE(-2)          | -0.168939    | -0.309402  | -0.056209  | 0.176694   | 0.122908   | 0.073062   | 0.103531   |
|                              | (0.32727)    | (0.14668)  | (0.20834)  | (0.16569)  | (0.15416)  | (0.14426)  | (0.11256)  |
|                              | [-0.51620]   | [-2.10932] | [-0.26980] | [1.06641]  | [ 0.79730] | [ 0.50645] | [ 0.91981] |
| MENA_STD_CYCLE(-1)           | -0.135915    | -0.285049  | -0.252823  | 0.547303   | 0.450047   | 0.345156   | 0.212836   |
|                              | (0.41883)    | (0.18772)  | (0.26662)  | (0.21204)  | (0.19728)  | (0.18462)  | (0.14405)  |
|                              | [-0.32451]   | [-1.51849] | [-0.94824] | [ 2.58109] | [ 2.28123] | [ 1.86955] | [ 1.47756] |
| MENA_STD_CYCLE(-2)           | -0.067059    | -0.017962  | 0.074749   | -0.550669  | -0.321354  | 0.143044   | -0.001959  |
|                              | (0.40503)    | (0.18154)  | (0.25784)  | (0.20506)  | (0.19078)  | (0.17854)  | (0.13930)  |
|                              | [-0.16556]   | [-0.09894] | [ 0.28990] | [-2.68542] | [-1.68439] | [ 0.80120] | [-0.01406] |
| LATAM_STD_CYCLE(-1)          | -0.289642    | -0.304186  | 0.035670   | 0.430913   | 0.333409   | 0.312394   | -0.038833  |
|                              | (0.49982)    | (0.22402)  | (0.31818)  | (0.25305)  | (0.23543)  | (0.22032)  | (0.17190)  |
|                              | [-0.57949]   | [-1.35786] | [0.11211]  | [ 1.70290] | [ 1.41617] | [1.41791]  | [-0.22590] |
| LATAM_STD_CYCLE(-2)          | -0.653246    | 0.121966   | 0.070256   | 0.272107   | -0.306584  | -0.461788  | 0.136527   |
|                              | (0.43792)    | (0.19628)  | (0.27878)  | (0.22171)  | (0.20628)  | (0.19304)  | (0.15061)  |
|                              | [-1.49169]   | [ 0.62140] | [ 0.25202] | [1.22/31]  | [-1.48629] | [-2.39225] | [ 0.90648] |
| EURO_SID_CYCLE(-1)           | 0.411891     | -0.515/30  | 0.065/93   | 0.080229   | 0.651669   | 0.513157   | -0.12/1/6  |
|                              | (0.54266)    | (0.24322)  | (0.34545)  | (0.2/4/3)  | (0.25561)  | (0.23920)  | (0.18663)  |
| ELIBO STD CVCLE(2)           | 0.460521     | [-2.12045] | 0.055128   | 0.29202]   | 2.34948    | 2.14529    | [-0.68143] |
| EURO_SID_CICLE(-2)           | -0.409321    | (0.25140)  | -0.033128  | -0.342009  | (0.26421)  | 0.244328   | (0.10201)  |
|                              | (0.30092)    | [4 25712]  | [0.35708]  | [ 1 20454] | [0.26310]  | (0.24723)  | [ 2 82469] |
| FASIA STD CVCLE(1)           | 0.13/815     | 0.503279   | 0.053700   | 0.000423   | 0.000207   | 0.654582   | 0.427332   |
| EASIA_STD_CTCLL(-I)          | (0.55358)    | (0.24811)  | (0.35240)  | (0.28027)  | (0.26075)  | (0.24402)  | (0.19039)  |
|                              | [0.24353]    | [ 2.02842] | [-0.15238] | [0.32263]  | [-0.38046] | [-2.68252] | [ 2 24451] |
| EASIA STD CYCLE(-2)          | 0.922586     | -0.631274  | -0 376378  | 0 223769   | 0 593986   | -0.132177  | -0.239575  |
|                              | (0.61744)    | (0.27673)  | (0.39305)  | (0.31259)  | (0.29083)  | (0.27216)  | (0.21235)  |
|                              | [ 1.494221   | [-2.28117] | [-0.95758] | [ 0.71585] | [ 2.04238] | [-0.485651 | [-1.12821] |
| С                            | -0.039760    | -0.049840  | 0.018680   | 0.070903   | -0.056490  | -0.042513  | -0.042033  |
|                              | (0.18109)    | (0.08116)  | (0.11528)  | (0.09168)  | (0.08530)  | (0.07982)  | (0.06228)  |
|                              | [-0.21956]   | [-0.61406] | [ 0.16204] | [ 0.77336] | [-0.66226] | [-0.53259] | [-0.67489] |
| R-squared                    | 0.554444     | 0.914981   | 0.826386   | 0.885836   | 0.900534   | 0.919197   | 0.946138   |
| Adj. R-squared               | 0.108889     | 0.829962   | 0.652771   | 0.771672   | 0.801068   | 0.838395   | 0.892276   |
| Sum sq. resids               | 12.30239     | 2.471303   | 4.985434   | 3.153274   | 2.729528   | 2.390380   | 1.455164   |
| S.E. equation                | 0.937412     | 0.420145   | 0.596743   | 0.474588   | 0.441550   | 0.413209   | 0.322398   |
| F-statistic                  | 1.244388     | 10.76210   | 4.759889   | 7.759319   | 9.053673   | 11.37585   | 17.56600   |
| Log likelihood               | -28.71543    | -5.442239  | -15.61797  | -8.975825  | -6.883296  | -4.959490  | 2.237348   |
| Akaike AIC                   | 3.014857     | 1.409810   | 2.111584   | 1.653505   | 1.509193   | 1.376517   | 0.880183   |
| Schwarz SC                   | 3.722079     | 2.117032   | 2.818806   | 2.360727   | 2.216415   | 2.083739   | 1.587405   |
| Mean dependent               | -0.017586    | -0.035862  | 0.051379   | 0.012414   | -0.089310  | -0.050000  | -0.080690  |
| S.D. dependent               | 0.993035     | 1.018888   | 1.012697   | 0.993201   | 0.989982   | 1.027879   | 0.982282   |
| Determinant resid covariance | e (dof adj.) | 3.30E-06   |            |            |            |            |            |

### Икономически изследвания, кн. 1, 2014

| Determinant resid covariance | 2.02E-08  |  |  |  |
|------------------------------|-----------|--|--|--|
| Log likelihood               | -31.10513 |  |  |  |
| Akaike information criterion | 9.386561  |  |  |  |
| Schwarz criterion            | 14.33711  |  |  |  |

Figure 2a

# VAR Stability analysis





# Figure 2b

Responses to the US credit cycle Response to Cholesky One S.D. Innovations ±2 S.E. Response of SSAFR\_STD\_CYCLE to US\_STD\_CYCLE

e







Response of EASIA\_STD\_CYCLE to US\_STD\_CYCLE





Response of LATAM\_STD\_CYCLE to US\_STD\_CYCLE





Response of EURO\_STD\_CYCLE to US\_STD\_CYCLE



# Figure 2c









1 2 3 4 5 6 7 8 9

43

| Table 20 | Ta | ble | 2b |
|----------|----|-----|----|
|----------|----|-----|----|

| variance decomposition of credit cycles |          |          |               |                 |            |            |           |            |
|-----------------------------------------|----------|----------|---------------|-----------------|------------|------------|-----------|------------|
|                                         |          | V        | ariance Decom | position of US  | STD_CYCLI  | 3:         | -         |            |
|                                         |          | US_STD_  | SSAFR_STD_    | SASIA_STD_      | MENA_STD_  | LATAM_STD_ | EURO_STD_ | EASIA_STD_ |
| Period                                  | S.E.     | CYCLE    | CYCLE         | CYCLE           | CYCLE      | CYCLE      | CYCLE     | CYCLE      |
| 1                                       | 0.937412 | 100.0000 | 0.000000      | 0.000000        | 0.000000   | 0.000000   | 0.000000  | 0.000000   |
| 2                                       | 0.953939 | 96.75910 | 0.000506      | 0.083402        | 0.159369   | 0.479569   | 2.423209  | 0.094843   |
| 3                                       | 1.049661 | 80.07336 | 0.234926      | 2.530924        | 7.109484   | 5.078043   | 2.988629  | 1.984639   |
| 4                                       | 1.138679 | 69.04142 | 0.450608      | 2.324727        | 12.75424   | 8.314934   | 4.903174  | 2.210900   |
| 5                                       | 1.214659 | 65.10711 | 0.779702      | 2.396293        | 15.59605   | 7.577505   | 6.392388  | 2.150946   |
| 6                                       | 1.249020 | 65.38755 | 1.152045      | 2.272513        | 15.12835   | 7.262345   | 6.699931  | 2.097263   |
| 7                                       | 1.262515 | 64.88591 | 1.147447      | 2.359050        | 15.19134   | 7.538305   | 6.640653  | 2.237301   |
| 8                                       | 1.279637 | 63.36319 | 1.254757      | 2.733611        | 15.99941   | 7.916538   | 6.493049  | 2.239439   |
| 9                                       | 1.302718 | 61.80175 | 1.577827      | 3.066213        | 16.58886   | 8.189450   | 6.614945  | 2.160957   |
| 10                                      | 1.322201 | 60.71948 | 1.988843      | 3.213462        | 16.82019   | 8.159897   | 6.977183  | 2.120953   |
|                                         |          | Vari     | ance Decompo  | sition of SSA   | FR STD CYC | LE         |           |            |
|                                         |          | US STD   | SSAFR STD     | SASIA STD       | MENA STD   | LATAM STD  | EURO STD  | EASIA STD  |
| Period                                  | SE       | CYCLE    | CYCLE         | CYCLE           | CYCLE      | CYCLE      | CYCLE     | CYCLE      |
| 1                                       | 0 420145 | 17.02576 | 82 97424      | 0.000000        | 0.000000   | 0.000000   | 0.000000  | 0.000000   |
| 2                                       | 0.606212 | 16 55578 | 46 75079      | 2 585460        | 21 04459   | 3 987383   | 5 803053  | 3 272941   |
| 3                                       | 0.694501 | 14 05108 | 39 77219      | 4 013090        | 23 57448   | 5 944700   | 10.03384  | 2 609714   |
| <u>з</u>                                | 0 729242 | 13 30356 | 40 33947      | 3 818645        | 21 78513   | 5 400019   | 10.03484  | 5 318342   |
|                                         | 0 707891 | 11 12586 | 33 88103      | 4 724530        | 25 85117   | 4 928560   | 9 640875  | 9 828075   |
| 5                                       | 0.12/001 | 10 49224 | 30 47645      | 5 162220        | 23.03117   | 4.920300   | 8 077675  | 11 60207   |
| 7                                       | 0.044004 | 10.46324 | 20.16466      | 5.020221        | 28.03410   | 4.09/903   | 8.922020  | 11.00227   |
| /                                       | 0.830199 | 10.398/4 | 30.10400      | 5.030321        | 26.31130   | 4.894011   | 0.033902  | 11.94033   |
| 8                                       | 0.8/50/9 | 10.40810 | 29.70834      | 0.449884        | 28.1/285   | 4.81/422   | 8.804840  | 11.03857   |
| 9                                       | 0.928801 | 9.823054 | 26.57691      | 7.654360        | 29.56590   | 5.101430   | 9.399580  | 11.8/8//   |
| 10                                      | 0.993102 | 8.659440 | 23.32085      | /.60096/        | 32.16129   | 5./04/55   | 9.996676  | 12.55602   |
|                                         |          | Var      | iance Decompo | osition of SAS. | IA_STD_CYC | LE:        | 1         | 1          |
|                                         |          | US_STD_  | SSAFR_STD_    | SASIA_STD_      | MENA_STD_  | LATAM_STD_ | EURO_STD_ | EASIA_STD_ |
| Period                                  | S.E.     | CYCLE    | CYCLE         | CYCLE           | CYCLE      | CYCLE      | CYCLE     | CYCLE      |
| 1                                       | 0.596743 | 4.257248 | 3.700663      | 92.04209        | 0.000000   | 0.000000   | 0.000000  | 0.000000   |
| 2                                       | 0.771647 | 15.39201 | 10.75314      | 73.09929        | 0.633152   | 0.037148   | 0.062256  | 0.022998   |
| 3                                       | 0.880972 | 13.16034 | 21.95481      | 61.65660        | 1.817553   | 0.539665   | 0.049121  | 0.821907   |
| 4                                       | 0.961640 | 11.28573 | 23.44619      | 51.75382        | 7.760859   | 4.445940   | 0.574580  | 0.732881   |
| 5                                       | 1.029893 | 9.885787 | 25.06561      | 45.12226        | 11.26915   | 6.498818   | 1.132251  | 1.026116   |
| 6                                       | 1.063470 | 10.14971 | 24.81080      | 42.35719        | 12.51006   | 6.960146   | 1.682658  | 1.529436   |
| 7                                       | 1.077818 | 10.31939 | 24.18971      | 41.89706        | 12.48690   | 7.106259   | 2.005496  | 1.995189   |
| 8                                       | 1.089951 | 10.12568 | 23.87270      | 42.07596        | 12.24944   | 6.996640   | 2.617369  | 2.062207   |
| 9                                       | 1.109975 | 9.767043 | 24.01413      | 42.24157        | 11.96138   | 6.749149   | 3.193697  | 2.073030   |
| 10                                      | 1.134077 | 9.356391 | 24.07443      | 42.20473        | 11.82008   | 6.477558   | 3.502489  | 2.564324   |
|                                         |          | Var      | iance Decompo | osition of MEN  | IA STD CYC | LE:        |           |            |
|                                         |          | US STD   | SSAFR STD     | SASIA STD       | MENA STD   | LATAM STD  | EURO STD  | EASIA STD  |
| Period                                  | S.E.     | CYCLE    | CYCLE         | CYCLE           | CYCLE      | CYCLE      | CYCLE     | CYCLE      |
| 1                                       | 0.474588 | 1.049380 | 48.80047      | 1.359270        | 48.79088   | 0.000000   | 0.000000  | 0.000000   |
| 2                                       | 0.632230 | 2.124796 | 39.13092      | 2.086285        | 49.44961   | 6.843187   | 0.268061  | 0.097134   |
| 3                                       | 0.732016 | 4.865618 | 31.52935      | 1.737533        | 42.35568   | 19.00658   | 0.211114  | 0.294130   |
| 4                                       | 0.798611 | 4.088218 | 27.35129      | 1.505263        | 41.24635   | 21.94944   | 3.568130  | 0.291295   |
| 5                                       | 0.875721 | 8.703236 | 22,75976      | 1.428515        | 40.33059   | 20.05782   | 6.477196  | 0.242883   |
| 6                                       | 0.931411 | 12,79729 | 20.11950      | 2,409943        | 38.30120   | 17.76464   | 8.392631  | 0.214787   |
| 7                                       | 0.958656 | 13.12180 | 19.29172      | 4.164862        | 36.49754   | 16.83850   | 9.862906  | 0.222669   |
| 8                                       | 0.981360 | 12.52749 | 19,53169      | 6.327094        | 34.82832   | 16.32706   | 9,909572  | 0.548768   |
| 9                                       | 1.004579 | 12.04339 | 19.84546      | 7.934017        | 33,29443   | 16,15983   | 9.486981  | 1.235888   |
| 10                                      | 1 022894 | 11 65712 | 20 21449      | 8 433796        | 32,42859   | 16 13089   | 9 305485  | 1 829624   |
| 10                                      | 1.022074 | Vori     | ance Decompo  | sition of LAT   | M STD CVC  | Ч F·       | 7.505105  | 1.027024   |
|                                         |          | Valla    | COAED COMPO   | CACIA CTD       | MENA CTO   | LL.        | ELIDO STD | EAGIA STD  |
| Period                                  | SE       | CVCLE    | CVCLE         | CVCLE           | CVCLE      | CVCLE      | CVCLE     | CVCLE      |
| 1                                       | 0.441550 | 5 200092 | 0.133020      | 0.007530        | 28 61030   | 66 03907   | 0.000000  | 0.000000   |
| 1                                       | 0.441330 | 2.200983 | 0.133029      | 4 620276        | 20.01939   | 22 75447   | 10.17504  | 0.101559   |
| 2                                       | 0.0/83/3 | 2.398228 | 9.194108      | 4.020376        | 39.3301/   | 35./344/   | 10.1/504  | 0.101558   |
| 5                                       | 0.825832 | 0.82/990 | 9.036519      | 3.8/6290        | 40.00541   | 25.00940   | 13.82/28  | 0.15/051   |
| 4                                       | 0.912228 | 11.99937 | 8.479744      | 3.995759        | 39.23259   | 21.92473   | 14.23532  | 0.132489   |

Variance decomposition of credit cycles

Mikhail Stolbov – International Credit Cycles: A Regional Perspective

| B                  |                                            |          |               |                |            |            |           |            |  |
|--------------------|--------------------------------------------|----------|---------------|----------------|------------|------------|-----------|------------|--|
| 5                  | 0.964375                                   | 11.37015 | 7.752203      | 6.023815       | 37.74792   | 19.81980   | 17.14467  | 0.141438   |  |
| 6                  | 0.996097                                   | 11.19307 | 7.591522      | 8.737097       | 36.27486   | 18.58234   | 17.22433  | 0.396774   |  |
| 7                  | 1.020258                                   | 10.73244 | 7.888990      | 11.33129       | 34.60050   | 18.14509   | 16.53842  | 0.763262   |  |
| 8                  | 1.042102                                   | 10.28727 | 8.811019      | 12.21338       | 33.82705   | 18.01414   | 15.91999  | 0.927148   |  |
| 9                  | 1.070285                                   | 9.901661 | 9.737656      | 11.79146       | 34.09810   | 17.79328   | 15.68570  | 0.992133   |  |
| 10                 | 1.100904                                   | 9.704406 | 9.901769      | 11.21025       | 34.85506   | 17.69509   | 15.67928  | 0.954142   |  |
|                    |                                            | Var      | iance Decompo | osition of EUR | O_STD_CYCI | LE:        |           |            |  |
|                    | Į                                          | US_STD_  | SSAFR_STD_    | SASIA_STD_     | MENA_STD_  | LATAM_STD_ | EURO_STD_ | EASIA_STD_ |  |
| Period             | S.E.                                       | CYCLE    | CYCLE         | CYCLE          | CYCLE      | CYCLE      | CYCLE     | CYCLE      |  |
| 1                  | 0.413209                                   | 5.148700 | 0.001997      | 1.970016       | 21.47565   | 3.263275   | 68.14036  | 0.000000   |  |
| 2                  | 0.653572                                   | 17.92901 | 2.485057      | 8.670152       | 30.13032   | 4.444176   | 31.57795  | 4.763336   |  |
| 3                  | 0.756767                                   | 13.41280 | 2.245008      | 11.62287       | 32.30281   | 3.541629   | 30.74473  | 6.130156   |  |
| 4                  | 0.793783                                   | 14.78419 | 2.741111      | 12.89097       | 30.45046   | 3.220646   | 29.04554  | 6.867081   |  |
| 5                  | 0.812771                                   | 14.25967 | 3.423492      | 14.06987       | 29.24874   | 3.647325   | 27.79038  | 7.560526   |  |
| 6                  | 0.840929                                   | 13.32168 | 3.514768      | 13.14449       | 30.87213   | 5.672856   | 26.40228  | 7.071799   |  |
| 7                  | 0.902831                                   | 11.55810 | 3.814254      | 11.58736       | 33.82765   | 7.138038   | 25.83703  | 6.237566   |  |
| 8                  | 0.981453                                   | 10.78654 | 3.383501      | 10.43821       | 36.56476   | 8.092339   | 25.01258  | 5.722065   |  |
| 9                  | 1.043465                                   | 11.07855 | 3.068413      | 10.32868       | 37.66221   | 7.843973   | 24.46270  | 5.555472   |  |
| 10                 | 1.074811                                   | 12.06545 | 2.892475      | 10.62610       | 37.09480   | 7.431110   | 24.43569  | 5.454373   |  |
|                    | Variance Decomposition of EASIA STD CYCLE: |          |               |                |            |            |           |            |  |
|                    |                                            | US STD   | SSAFR STD     | SASIA STD      | MENA STD   | LATAM STD  | EURO STD  | EASIA STD  |  |
| Period             | S.E.                                       | CYCLE    | CYCLE         | CYCLE          | CYCLE      | CYCLE      | CYCLE     | CYCLE      |  |
| 1                  | 0.322398                                   | 0.018555 | 16.17024      | 31.40676       | 0.641127   | 2.686354   | 3.390728  | 45.68624   |  |
| 2                  | 0.383999                                   | 20.96019 | 11.54704      | 23.99343       | 0.910322   | 1.894084   | 2.610075  | 38.08487   |  |
| 3                  | 0.463070                                   | 28.23268 | 8.416574      | 21.03921       | 3.515699   | 2.379044   | 9.277646  | 27.13915   |  |
| 4                  | 0.559912                                   | 19.40498 | 6.406431      | 19.13300       | 14.26520   | 7.638210   | 13.17254  | 19.97964   |  |
| 5                  | 0.727479                                   | 11.49557 | 4.135808      | 18.28056       | 27.88804   | 7.338139   | 13.88218  | 16.97970   |  |
| 6                  | 0.835388                                   | 11.45350 | 3.147959      | 16.52409       | 32.24935   | 6.498003   | 14.42089  | 15.70620   |  |
| 7                  | 0.882914                                   | 14.39319 | 2.946053      | 15.86187       | 31.43255   | 5.878711   | 14.14602  | 15.34161   |  |
| 8                  | 0.895987                                   | 15.69577 | 2.948858      | 15.49004       | 30.71997   | 6.321774   | 13.82907  | 14.99451   |  |
| 9                  | 0.931341                                   | 14.98103 | 2.990415      | 14.35550       | 32.37400   | 8.164111   | 13.18166  | 13.95328   |  |
| 10                 | 0.995688                                   | 13.22723 | 2.995733      | 12.59137       | 35.38975   | 9.974076   | 13.33636  | 12.48547   |  |
| Cholesky Ordering: |                                            |          |               |                |            |            |           |            |  |
| US_STD_CYCLE       |                                            |          |               |                |            |            | ļ i       |            |  |
| SSAFR_STD_CYCLE    |                                            |          |               |                |            |            | ļ i       |            |  |
| SASIA_STD_CYCLE    | Į ,                                        |          |               |                |            |            | l 1       |            |  |
| MENA_STD_CYCLE     | Į ,                                        |          |               |                |            |            | l 1       |            |  |
| LATAM_STD_CYCLE    | Į ,                                        |          |               |                |            |            | l 1       |            |  |
| EURO_STD_CYCLE     |                                            |          |               |                |            |            | ļ i       |            |  |
| EASIA_STD_CYCLE    |                                            |          |               |                |            |            | l i       | l          |  |

# Appendix 3

# REGRESSION ANALYSIS OF BANKING CRISES

Table 3a.

| Dependent Variable: BANK   | CR               |                    |                      |          |  |  |
|----------------------------|------------------|--------------------|----------------------|----------|--|--|
| Method: ML/QML - Poisso    | n Count (Quadra  | tic hill climbing) |                      |          |  |  |
| Sample: 1 65               |                  |                    |                      |          |  |  |
| Included observations: 65  |                  |                    |                      |          |  |  |
| Convergence achieved after | 4 iterations     |                    |                      |          |  |  |
| Covariance matrix compute  | d using second d | erivatives         |                      |          |  |  |
| Variable                   | Coefficient      | Std. Error         | z-Statistic          | Prob.    |  |  |
| С                          | 1.612290         | 0.148648           | 10.84636             | 0.0000   |  |  |
| NSI_C                      | 0.170396         | 0.080011           | 2.129656             | 0.0332   |  |  |
| NSI_REG                    | -0.243473        | 0.088055           | -2.764999            | 0.0057   |  |  |
| GDP_GROWTH                 | 0.055797         | 0.030281           | 1.842673             | 0.0654   |  |  |
| INF_DEFL                   | 0.000826         | 0.000281           | 2.939094             | 0.0033   |  |  |
| MERTRADE_GDP               | -0.003392        | 0.001706           | -1.988988            | 0.0467   |  |  |
| R-squared                  | 0.263505         | Mean dependent     | var                  | 6.015385 |  |  |
| Adjusted R-squared         | 0.201090         | S.D. dependent v   | ar                   | 3.384211 |  |  |
| S.E. of regression         | 3.024867         | Akaike info criter | rion                 | 5.099962 |  |  |
| Sum squared resid          | 539.8396         | Schwarz criterion  | L                    | 5.300675 |  |  |
| Log likelihood             | -159.7488        | Hannan-Quinn cr    | Hannan-Quinn criter. |          |  |  |
| Restr. log likelihood      | -175.3187        | LR statistic       | 31.13980             |          |  |  |
| Avg. log likelihood        | -2.457673        | Prob(LR statistic) | )                    | 0.000009 |  |  |

# Table 3b.

| Dependent Variable: SRESI | D^2-1       |                      |                   |          |  |
|---------------------------|-------------|----------------------|-------------------|----------|--|
| Method: Least Squares     |             |                      |                   |          |  |
| Sample: 1 65              |             |                      |                   |          |  |
| Included observations: 65 |             |                      |                   |          |  |
| Variable                  | Coefficient | Std. Error           | t-Statistic       | Prob.    |  |
| BANKCR_F                  | 0.058477    | 0.058023             | 1.007839          | 0.3173   |  |
| R-squared                 | -0.019185   | Mean dependent va    | ar                | 0.541035 |  |
| Adjusted R-squared        | -0.019185   | S.D. dependent var   | r                 | 2.899582 |  |
| S.E. of regression        | 2.927264    | Akaike info criterie | on                | 5.001278 |  |
| Sum squared resid         | 548.4079    | Schwarz criterion    | Schwarz criterion |          |  |
| Log likelihood            | -161.5415   | Hannan-Quinn crit    | 5.014477          |          |  |
| Durbin-Watson stat        | 1.546500    |                      |                   |          |  |

# Table 3c.

| Dependent Variable: BANK   | CR              |                   |             |          |
|----------------------------|-----------------|-------------------|-------------|----------|
| Method: ML/OML - Poisson   | Count (Ouadrati | ic hill climbing) |             |          |
| Sample: 1 65               |                 | (1)               |             |          |
| Included observations: 65  |                 |                   |             |          |
| Convergence achieved after | 4 iterations    |                   |             |          |
| Covariance matrix computed | using second de | rivatives         |             |          |
| Variable                   | Coefficient     | Std. Error        | z-Statistic | Prob.    |
| С                          | 2.081849        | 0.251953          | 8.262858    | 0.0000   |
| DIF C                      | 0.026923        | 0.017991          | 1.496518    | 0.1345   |
| DIF REG                    | -0.063554       | 0.017745          | -3.581522   | 0.0003   |
| TOTINFL_C                  | -0.010815       | 0.018028          | -0.599898   | 0.5486   |
| TOTINFL_REG                | -0.081787       | 0.043180          | -1.894079   | 0.0582   |
| GDP_GROWTH                 | 0.060305        | 0.030893          | 1.952080    | 0.0509   |
| INF_DEFL                   | 0.000792        | 0.000283          | 2.797525    | 0.0051   |
| MERTRADE_GDP               | -0.003300       | 0.001705          | -1.935438   | 0.0529   |
| R-squared                  | 0.277668        | Mean dependent    | var         | 6.015385 |
| Adjusted R-squared         | 0.188961        | S.D. dependent v  | ar          | 3.384211 |
| S.E. of regression         | 3.047743        | Akaike info crite | rion        | 5.101153 |
| Sum squared resid          | 529.4581        | Schwarz criterior | 1           | 5.368770 |
| Log likelihood             | -157.7875       | Hannan-Quinn cr   | riter.      | 5.206745 |
| Restr. log likelihood      | -175.3187       | LR statistic      |             | 35.06237 |
| Avg. log likelihood        | -2.427500       | Prob(LR statistic | )           | 0.000011 |

Table 3d.

| Dependent Variable: SRES  | SID^2-1     |                    |             |          |
|---------------------------|-------------|--------------------|-------------|----------|
| Method: Least Squares     |             |                    |             |          |
| Sample: 1 65              |             |                    |             |          |
| Included observations: 65 |             |                    |             |          |
| Variable                  | Coefficient | Std. Error         | t-Statistic | Prob.    |
| BANKCR_F                  | 0.084919    | 0.060028           | 1.414662    | 0.1620   |
| R-squared                 | -0.023269   | Mean dependent     | var         | 0.690398 |
| Adjusted R-squared        | -0.023269   | S.D. dependent v   | ar          | 2.959604 |
| S.E. of regression        | 2.993840    | Akaike info criter | rion        | 5.046256 |
| Sum squared resid         | 573.6371    | Schwarz criterion  | l           | 5.079708 |
| Log likelihood            | -163.0033   | Hannan-Quinn cr    | 5.059455    |          |
| Durbin-Watson stat        | 1.230269    |                    |             |          |